Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074752

RESUMO

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.


Assuntos
Nanoestruturas/química , Engenharia de Proteínas , Proteínas/química , Repetição de Anquirina , Nanoestruturas/ultraestrutura , Conformação Proteica em alfa-Hélice , Proteínas/genética , Proteínas/ultraestrutura
2.
SLAS Discov ; 26(2): 230-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33334237

RESUMO

Affinity selection mass spectrometry (MS) or, simply, affinity mass spectrometry (AMS) is a label-free technology that has been used to identify high-affinity ligands of target proteins of interest by screening against small-molecule compound libraries and identifying molecules that are enriched in the presence of the target protein. We have previously applied Agilent Technology's (Santa Clara, CA) RapidFire solid-phase extraction (SPE)-based high-throughput MS technology to screen small-molecule libraries using AMS. However, SPE-based technologies rely on fluidics for desalting and separation prior to mass analysis with attendant high solvent consumption, relatively high sample volume requirements, risk of sample carryover, and frequent maintenance. To address these challenges, we have established an AMS platform using a laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) ionization source (Phytronix, Quebec, Canada) coupled with a SCIEX 5600+ TripleTOF MS (Framingham, MA). We also validated a data-independent acquisition (DIA) Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) method for the robust detection and analysis of small-molecule affinity hits. An informatics platform developed in-house has resulted in a streamlined data analysis workflow for high-throughput AMS screening campaigns and reduced data processing time without compromising data quality. Finally, 68,000 compounds were screened in a single plate and affinity selected hits were confirmed in an orthogonal enzyme activity assay.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Bibliotecas de Moléculas Pequenas
3.
Nat Protoc ; 15(3): 1132-1157, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32005983

RESUMO

It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is time-consuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes or clarified cell lysates. In the liquid chromatography coupled to mass spectrometry (LC-MS) approach described in this protocol, samples in MS-incompatible conditions are injected onto a short size-exclusion chromatography column. Proteins and protein complexes are separated from small molecule non-volatile buffer components using an aqueous, non-denaturing mobile phase. Eluted proteins and protein complexes are detected by the mass spectrometer after electrospray ionization. Mass spectra can inform regarding protein sample purity and oligomerization, and additional tandem mass spectra can help to further obtain information on protein complex subunits. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization.


Assuntos
Técnicas de Química Analítica/métodos , Espectrometria de Massas/métodos , Proteínas/química , Soluções Tampão , Cromatografia em Gel
4.
Science ; 364(6441): 658-664, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097662

RESUMO

The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.


Assuntos
Conformação Proteica , Engenharia de Proteínas/métodos , Multimerização Proteica , Concentração de Íons de Hidrogênio , Estabilidade Proteica
5.
Proc Natl Acad Sci U S A ; 116(17): 8143-8148, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30944216

RESUMO

To fulfill their biological functions, proteins must interact with their specific binding partners and often function as large assemblies composed of multiple proteins or proteins plus other biomolecules. Structural characterization of these complexes, including identification of all binding partners, their relative binding affinities, and complex topology, is integral for understanding function. Understanding how proteins assemble and how subunits in a complex interact is a cornerstone of structural biology. Here we report a native mass spectrometry (MS)-based method to characterize subunit interactions in globular protein complexes. We demonstrate that dissociation of protein complexes by surface collisions, at the lower end of the typical surface-induced dissociation (SID) collision energy range, consistently cleaves the weakest protein:protein interfaces, producing products that are reflective of the known structure. We present here combined results for multiple complexes as a training set, two validation cases, and four computational models. We show that SID appearance energies can be predicted from structures via a computationally derived expression containing three terms (number of residues in a given interface, unsatisfied hydrogen bonds, and a rigidity factor).


Assuntos
Proteínas/química , Simulação por Computador , Ligação de Hidrogênio , Espectrometria de Massas , Ligação Proteica , Propriedades de Superfície
6.
Nature ; 565(7737): 106-111, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568301

RESUMO

Specificity of interactions between two DNA strands, or between protein and DNA, is often achieved by varying bases or side chains coming off the DNA or protein backbone-for example, the bases participating in Watson-Crick pairing in the double helix, or the side chains contacting DNA in TALEN-DNA complexes. By contrast, specificity of protein-protein interactions usually involves backbone shape complementarity1, which is less modular and hence harder to generalize. Coiled-coil heterodimers are an exception, but the restricted geometry of interactions across the heterodimer interface (primarily at the heptad a and d positions2) limits the number of orthogonal pairs that can be created simply by varying side-chain interactions3,4. Here we show that protein-protein interaction specificity can be achieved using extensive and modular side-chain hydrogen-bond networks. We used the Crick generating equations5 to produce millions of four-helix backbones with varying degrees of supercoiling around a central axis, identified those accommodating extensive hydrogen-bond networks, and used Rosetta to connect pairs of helices with short loops and to optimize the remainder of the sequence. Of 97 such designs expressed in Escherichia coli, 65 formed constitutive heterodimers, and the crystal structures of four designs were in close agreement with the computational models and confirmed the designed hydrogen-bond networks. In cells, six heterodimers were fully orthogonal, and in vitro-following mixing of 32 chains from 16 heterodimer designs, denaturation in 5 M guanidine hydrochloride and reannealing-almost all of the interactions observed by native mass spectrometry were between the designed cognate pairs. The ability to design orthogonal protein heterodimers should enable sophisticated protein-based control logic for synthetic biology, and illustrates that nature has not fully explored the possibilities for programmable biomolecular interaction modalities.


Assuntos
Simulação por Computador , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas/química , Proteínas/metabolismo , DNA/química , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Guanidina/farmacologia , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Desnaturação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas/genética
7.
Proc Natl Acad Sci U S A ; 115(6): 1268-1273, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29351988

RESUMO

Computational protein design provides the tools to expand the diversity of protein complexes beyond those found in nature. Understanding the rules that drive proteins to interact with each other enables the design of protein-protein interactions to generate specific protein assemblies. In this work, we designed protein-protein interfaces between dimers and trimers to generate dodecameric protein assemblies with dihedral point group symmetry. We subsequently analyzed the designed protein complexes by native MS. We show that the use of ion mobility MS in combination with surface-induced dissociation (SID) allows for the rapid determination of the stoichiometry and topology of designed complexes. The information collected along with the speed of data acquisition and processing make SID ion mobility MS well-suited to determine key structural features of designed protein complexes, thereby circumventing the requirement for more time- and sample-consuming structural biology approaches.


Assuntos
Espectrometria de Massas/métodos , Complexos Multiproteicos/química , Avidina/química , Lactoglobulinas/química , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Pré-Albumina/química , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...